Genetic analysis of reproductive development in tomato.
نویسندگان
چکیده
Besides being an important commercial crop, tomato (Solanum lycopersicum L.) constitutes a model species for the study of plant developmental processes. Current research tends to combine classic disciplines such as physiology and genetics with modern approaches coming from molecular biology and genomics with a view to elucidating the biological mechanisms underlying plant architecture, floral transition and development of flowers and fruits. Comparative and functional analyses of tomato regulatory genes such as LATERAL SUPPRESSOR (LS), SELF PRUNING (SP), SINGLE FLOWER TRUSS (SFT) and FALSIFLORA (FA) have revealed mechanisms involved in shoot development and flowering time which are conserved among Arabidopsis, tomato and other plant species. Furthermore, several regulatory genes encoding transcription factors have been characterized as responsible for singular features of vegetative and reproductive development of tomato. Thus, the sympodial growth habit seems to require a specific control of the developmental fate followed by shoot meristems. In this process, novel genetic and molecular interactions involving SP, SFT and FA genes would be essential. Also this latter, but mainly ANANTHA (AN) and COMPOUND INFLORESCENCE (S) have recently been found to regulate the inflorescence architecture of the tomato. Concerning fruit development, genetic and molecular analyses of new genes such as fw2.2, FASCIATED, OVATE and SUN have proved their contribution to the domestication process and most importantly, their function as key regulators of fruit size and shape variation. Tomato ripening is also being elucidated thanks to the characterization of regulatory genes such as RIPENING INHIBITOR (RIN), NON-RIPENING (NOR), TDR4 and COLORLESS NON-RIPENING (CNR), which have been found to control early stages of fruit development and maturation. At the same time, much research is dedicated to isolating the targets of the ripening regulators, as well as the key genes promoting the parthenocarpic development of tomato fruits. Hopefully, the ongoing sequencing project and the progress made by integrating several research fields will help to unravel the genetic and molecular pathways controlling tomato development.
منابع مشابه
Genetic erosion of traditional varieties of vegetable crops in Europe: tomato cultivation in Valencia (Spain) as a case Study
Ever since the arrival of the tomato to Spain in the 16th century, great diversification of the crop has taken place, giving rise to a rich collection of varietal types. The ‘Comunidad Valenciana’, with its deep-rooted agricultural tradition, is one of the Spanish regions with the greatest diversity in traditional tomato varieties, characterised by their local adaptation and high fruit quality....
متن کاملPhylogenetic analysis and genetic variation of Tomato yellow leaf curl virus based on the V1 gene in Iraq
Tomato yellow leaf curl virus (TYLCV) is a supreme pathogen in tropical and subtropical areas. During 2014-2015, a total of 393 tomato samples showing Tomato yellow leaf curl disease (TYLCD) symptoms were collected from six different provinces of Iraq. In serological assays, 55 out of 393 samples (14%) reacted positively with TYLCV-specific antibodies .The presence of TYLCV was verified in 21 (...
متن کاملFunctional Analysis of the Arlequin Mutant Corroborates the Essential Role of the ARLEQUIN/TAGL1 Gene during Reproductive Development of Tomato
Reproductive development of higher plants comprises successive events of organ differentiation and growth which finally lead to the formation of a mature fruit. However, most of the genetic and molecular mechanisms which coordinate such developmental events are yet to be identified and characterized. Arlequin (Alq), a semi-dominant T-DNA tomato mutant showed developmental changes affecting flow...
متن کاملIdentification and characterization of histone deacetylases in tomato (Solanum lycopersicum)
Histone acetylation and deacetylation at the N-terminus of histone tails play crucial roles in the regulation of eukaryotic gene activity. Histone acetylation and deacetylation are catalyzed by histone acetyltransferases and histone deacetylases (HDACs), respectively. A growing number of studies have demonstrated the importance of histone deacetylation/acetylation on genome stability, transcrip...
متن کاملI-33: Pharmacogenetics of Reproductive Medicine
Adverse drug reactions (ADRs) are a major problem in drug therapy and drug development. Inter-individual genetic differences can have significant roles in determining an individual’s susceptibility to ADRs. The rapid development of techniques in the area of genome analysis has put the scientific community in a power position and facilitated identification of new pharmacogenomic biomarkers that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The International journal of developmental biology
دوره 53 8-10 شماره
صفحات -
تاریخ انتشار 2009